

MATERIALS ENGINEERING

Ankush Gaurav Assistant Professor

Mechanical Engineering Discipline

Uma Nath Singh Institute of Engineering & Technology Veer Bahadur Singh Purvanchal University, Jaunpur, India

ankushgaurav.vbspu@gmail.com

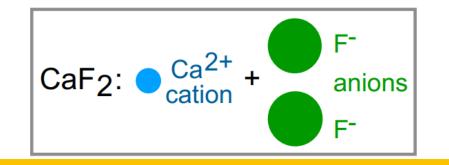
CERAMIC CRYSTAL STRUCTURES

CERAMIC CRYSTAL STRUCTURES

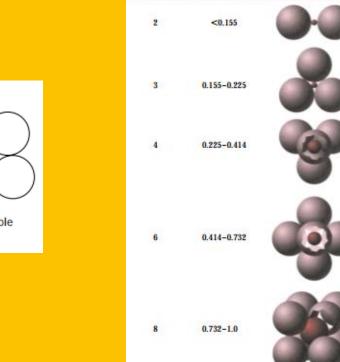
- Ceramics are composed of at least two elements
- Ceramic Crystal structures are generally more complex than those for metals

Ceramic Bonding

- Mostly ionic, some covalent.
- Ionic character increases with difference in electronegativity


Material	Percent Ionic Character
CaF ₂	89
MgO	73
NaCl	67
Al_2O_3	63
SiO ₂	51
Si ₃ N ₄	30
ZnS	18
SiC	12

Ionic Bonding & Structure


Ceramic materials for which the atomic bonding is predominantly ionic:

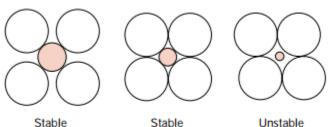
- metallic ions, or cations, are positively charged
- anions, which are negatively charged
- <u>Note:</u> Two characteristics of the component ions in crystalline ceramic mater ials influence the crystal structure: the magnitude of the electrical charge o n each of the component ions, and the relative sizes of the cations and ani ons.
- Charge Neutrality: --Net charge in the structure should be zero.

The relative sizes of the cations and anions.

• maximize the of nearest oppositely charged neighbours

Coordination

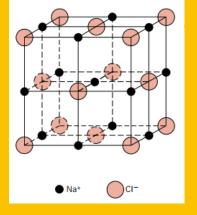
Number


Cation-Anion

Radius Ratio

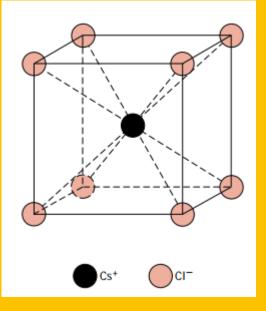
Coordination

Geometry

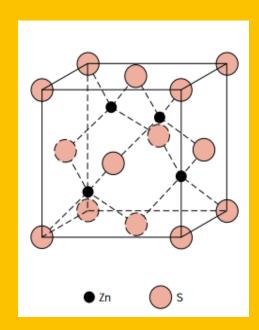


AX-TYPE CRYSTAL STRUCTURES

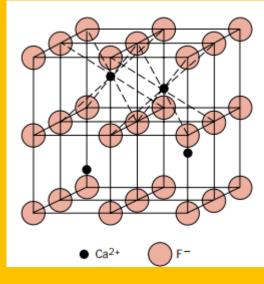
• cations = anions


Rock Salt Structure

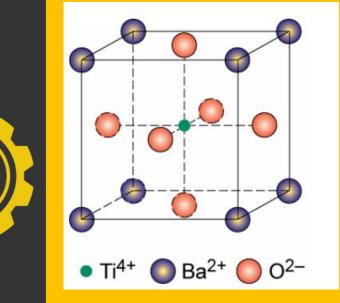
- Most common AX crystal structure is the *sodium chloride* (NaCl)
- The coordination number for both cations and anions is 6
- MgO, MnS, LiF, and FeO.


Cesium Chloride Structure

- coordination number is 8
- Not *BCC*
- CsBr and CsI


Zinc Blende Structure

- coordination number is 4
- ZnS, ZnTe, and SiC


Cation ≠ Anion

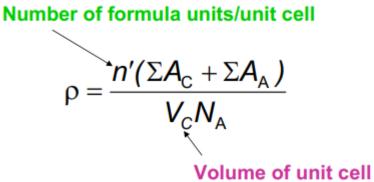
Example: CaF₂ Cation to anion size ratio is CaF₂ is about 0.8 giving co-ordination number 8

> Other Example: UO₂, PuO₂, and ThO₂

Am**B**n**X**p-**TYPE CRYSTAL STRUCTURES**

Example:Barium titanate (BaTiO₃)

Other Example: Strontium zirconium oxide (SrZrO₃)

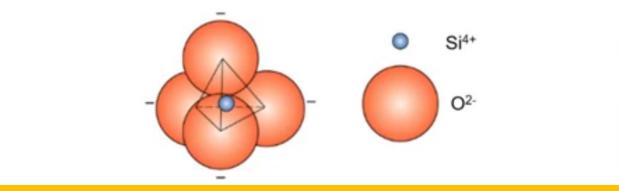

DENSITY COMPUTATIONS—CERAMICS

 $\frac{n'(\Sigma A_{\rm C} + \Sigma A_{\rm A})}{V_{\rm C} N_{\rm A}}$ $\rho =$ Volume of unit cell

n' = the number of formula units¹ within the unit cell

 $\Sigma A_{\rm C}$ = the sum of the atomic weights of all cations in the formula unit $\Sigma A_{\rm A}$ = the sum of the atomic weights of all anions in the formula unit $V_{\rm C}$ = the unit cell volume

 $N_{\rm A}$ = Avogadro's number, 6.023 × 10²³ formula units/mol

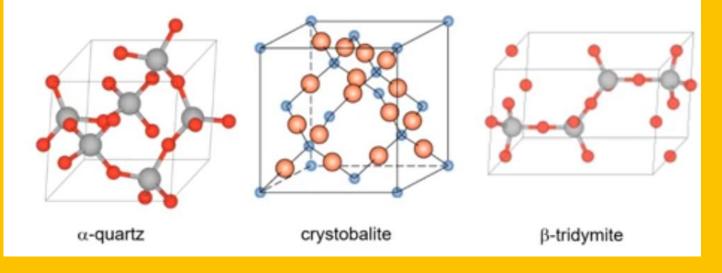


SILICATE CERAMICS

Oxygen and silicon are the two most abundant elements on earth

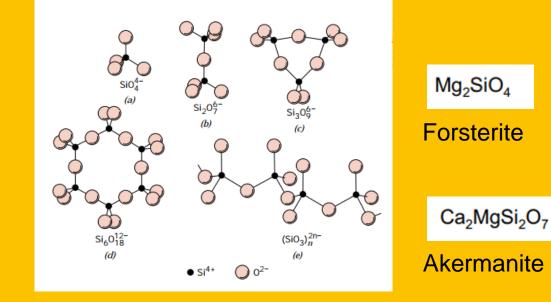
Silicates: Material comprised primarily of Si & O

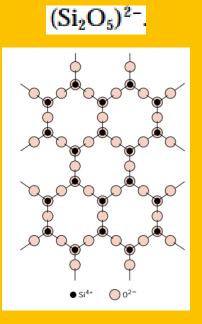
Characterized by arrangement of SiO₄⁴⁻ tetrahedrons

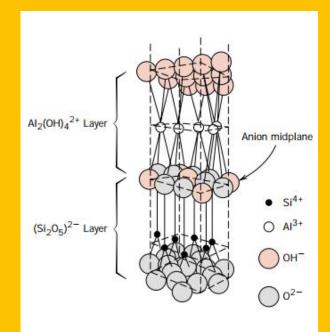


bulk of soils, rocks, clays, and sand come under the silicate classification

- 3 polymorphic crystalline structures for silica:
 - · Quartz, cristobalite, tridymite
- Strong Si-O bonds → high melting temperature (1710°C)




THE SILICATES


 Combine SiO4⁴⁻ tetrahedral are shared by other tetrahedral to form some rather complex structures *Simple Silicates*

Layered Silicates

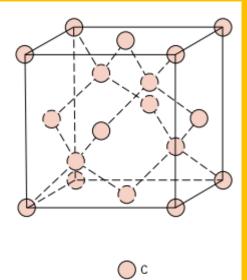
• A two-dimensional sheet or layered structure can also be produced by the sharing of three oxygen ions in e ach of the tetrahedra

 $Al_2(Si_2O_5)(OH)_4$


```
Micas KAl<sub>3</sub>Si<sub>3</sub>O<sub>10</sub>(OH)<sub>2</sub>.
Talc Mg<sub>3</sub>( Si<sub>2</sub>O<sub>5</sub>)<sub>2</sub>(OH)<sub>2</sub>
```

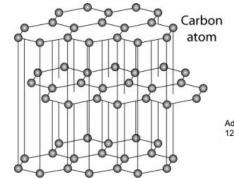
 their basic structure is characteristic of the clays and other minerals

14



One of the most common clay minerals, kaolinite

Carbon


Diamond

Also shown by germanium, silicon

Graphite

layer structure – aromatic layers

Adapted from Fig. 12.17, Callister 7e.

- weak van der Waal's forces between layers
- planes slide easily, good lubricant

References

- Material Science by S Montal Question 12 pdf
- Callister Fundamentals of Materials Science and Engineering 5e
- William D. Callister Materials Science and Engineering. An Introduction-W iley (2006)
- <u>http://web.eng.fiu.edu/wangc/EGN3365-12.pdf</u>
- <u>https://www.youtube.com/watch?v=Wst5Ga8pHDY</u>

Thank You

