Tutorial I

B.Tech. Sem II Mathematics II

1. Define the terms with one example supporting to each: (a) Order and Degree of a differential equation.(b) Linear, semi-linear and nonlinear differential equation.
2. Find the Order and Degree of (i) $y=\sqrt{x} \frac{d y}{d x}+\frac{k}{\frac{d y}{d x}}$, (ii) $k \frac{d^{2} y}{d x^{2}}=\left[1+\left(\frac{d y}{d x}\right)^{2}\right]^{\frac{3}{2}}$
3. Find the differential equation of the circles passing through the origin and having their centres on the x -axis. Ans: $2 x y y^{\prime}=y^{2}-x^{2}$
4. Write the order and degree of the differential equation: $x^{2}\left(d^{2} y / d x^{2}\right)^{3}+y(d y / d x)^{4}+y^{4}=0$;
5. Find the differential equation corresponding to (i) $y=a e^{3 x}+b e^{x}$. (ii) $x=a \sin (w t+b)$. (iii) $y=A e^{x}+B e^{-x}+C$.
6. Show that $A x^{2}+B y^{2}=1$ is the solution of $x\left\{y \frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{2}\right\}=y \frac{d y}{d x}$.
7. Determine the differential equation whose set of independent solution is $\left\{e^{x}, x e^{x}, x^{2} e^{x}\right\}$. Ans: $y^{\prime \prime \prime}-3 y^{\prime \prime}+3 y^{\prime}-y=0$
8. Formulate the differential equation for $y=c(x-c)^{2}$ Ans: $y^{\prime 3}=4 y\left(x y^{\prime}-2 y\right)$
9. Which of the following set of functions are L.I. (a). $\left\{e^{x}, x e^{x}, \sinh x\right\}$. (b). $\left\{1+x, 1+2 x, x^{2}\right\}$, (c). $\left\{\sin 3 x, \sin x, \sin ^{3} x\right\}$, Ans: (a), (b)
10. Solve (i) $\frac{d y}{d x}=\frac{1+y^{2}}{1+x^{2}}$, Ans: $y-x=c(1+x y)$; (ii) $\frac{d y}{d x}=\frac{x(2 \log x+1)}{\sin y+y \cos y}$, Ans: $y \sin y=x^{2} \log x+c$; (iii) $x y \frac{d y}{d x}=y+2$, where $y(1)=1, \mathbf{A n s}: e^{y}=\frac{e}{9} x(y+2)^{2}$
(iv) $\frac{d y}{d x}=\cos (x+y)$, Ans: $x+\arcsin (x+y)+\cot (x+y)+c=0$
(v) $y\left(\sqrt{1-x^{2}}\right) d y+x\left(\sqrt{1-y^{2}}\right) d x=0$. Ans: $\sqrt{1-x^{2}}+\sqrt{1-y^{2}}+c=0$
(vi) $\frac{d y}{d x}=e^{x+y}+x^{2} e^{x^{3}+y}$, Ans: $e^{x}+e^{-y}+\frac{1}{3} e^{x^{3}}+c=0$
(vii) $y^{\prime} \sin x=y \log y, y=1$ when $x=\pi / 2$. Ans: $y=1$
(viii) $\frac{d y}{d x}=x y+x+y+1$. Ans: $\log (y+1)=\frac{(x+1)^{2}}{2}+c$.
(ix) $\tan y \frac{d y}{d x}=\sin (x+y)+\sin (x-y)$. Ans: $\sec y+2 \cos x+c=0$.
(x) $\frac{d y}{d x}=\frac{2}{x+2 y-3}$ (v-separable).
(xi) $\left(x^{2}-y^{2}\right) d x+2 x y d y=0$. (Homogeneous).
(xii) $x \frac{d y}{d x}=y(\log y-\log x+1)$. (Homogeneous).
(xiii) $y e^{(x / y)} d x=\left(x e^{(x / y)}+y^{2}\right) d y$. (Homogeneous).
11. Integrate $\left(1+x^{2}\right) \frac{d y}{d x}+2 x y-4 x^{2}=0$ and obtain the cubic curve satisfying this equation and passing through origin.
12. Solve (i) $x^{2} y-x^{3} \frac{d y}{d x}=y^{4} \cos x$ Ans: $x^{3} y^{-3}=c+3 \sin x$.
(ii) $y\left(2 x y+e^{x}\right) d x-e^{x} d y=0$, Ans: $e^{x}=y(c-x) y$
(iii) $y d x-x d y+\left(1+x^{2}\right) d x+x^{2} \sin y=0$, Ans: $x^{2}-y-1-x \cos y=c x$
(iv) $\left(x y^{2}+2 x^{2} y^{3}\right) d x+\left(x^{2} y-x^{3} y^{2}\right) d y=0$, Ans: $\log \frac{x^{2}}{y}-\frac{1}{x y}=c$
(v) $\left(x y^{3}+y\right) d x+2\left(x^{2} y^{2}+x+y^{4}\right) d y=0$, Ans: $3 x^{2} y^{4}+6 x y^{2}+2 y^{6}=c$
(vi) $\left(y^{2}+2 x^{2} y\right) d x+\left(2 x^{3}-x y\right) d y=0$, Ans: $4 x^{1 / 2} y^{1 / 2}-\frac{2}{3} x^{-\frac{3}{2}} y^{\frac{3}{2}}=c$
(vii) $\frac{x d x+y d y}{x d y-y d x}=\sqrt{\frac{a^{2}-x^{2}-y^{2}}{x^{2}+y^{2}}}$, Ans: $y\left(1+x^{2}\right)=\arctan x-\frac{\pi}{4}$
13. Show that the current in a coil containing a resistance R, an inductance L, and a constant e.m. f. E at time t is given by $I=\frac{E}{R}\left(1-e^{\frac{-R t}{L}}\right)$.
14. Solve the equation $L \frac{d i}{d t}+R i=E_{0} \sin \omega t$, where $L R$ and E_{0} are constants and discuss the case when t increases indefinitely.
15. A resistance of 100 ohms, an inductance of 0.5 Henry are connected in series with a battery of 20 volts. Find the current in the circuit as a function of time.
16. Solve (i) $\frac{d x}{d y}=\frac{y}{x+\sqrt{x y}}$.
(ii) $r \sin \theta-\cos \theta \frac{d r}{d \theta}=r^{2}$, Ans: $1=r(c \cos \theta+\sin \theta)$;
(iii) $d r+(2 r \cot \theta+\sin 2 \theta) d \theta=0$.
(iv) $y \log y \frac{d x}{d y}+x=\log y$.
(v) $x \log x \frac{d y}{d x}+y=2 \log x$.
(vi) $\frac{d y}{d x}+x y=y^{2} e^{x^{2} / 2} \sin x$. Ans: $e^{-x^{2} / 2}=(c+\cos x) y$;
(vii) $[y(1+1 / x)+\cos y] d x+[x+\log x-x \sin y] d y$.Ans: $y(x+\log x)+x \cos y=c$;
(viii) $[y(1+1 / x)+\cos y] d x+[x+\log x-x \sin y] d y$. Ans: $y(x+\log x)+x \cos y=c$;
(ix) $(1+x y) y d x+(1-x y) x d y=0$. Ans: $\log (x / y)=c+\frac{1}{x y}$;
(x) $x^{2} y d x-\left(x^{3}+y^{3}\right) d y=0$. Ans: $y=c e^{\frac{x^{3}}{y^{3}}}$.
(xi) $\left(y+\frac{1}{3} y^{3}+\frac{1}{2} x^{2}\right) d x+\frac{1}{4}\left(x+x y^{2}\right) d y=0$. Ans: $3 x^{4} y+x^{4} y^{3}+x^{6}=c$.
(xii) $y\left(x^{2} y^{2}+x y+1\right) d x+\left(x^{2} y^{2}-x y+1\right) x d y=0$. Ans: $x y \log (x / y)-\frac{1}{x y}=c$;
