Tutorial 5 Conformal mapping and bilinear transformation

Q.1 Under the transformation w = iz + i, Find the image of half-plane x > 0, in z-plane on w-plane. **Ans** v > 1**Q.2** Find the image of the region y > 1, under the transformation w = (1 - i)z.

Q.3 Find the image of the infinite strip $0 < y < \frac{1}{2c}$, under the transformation $w = \frac{1}{z}$. **Ans** $u^2 + (v+c)^2 > c^2$, v < 0

Q.4 Find the image of the quadrant x > 1, y > 0, under the transformation $w = \frac{1}{z}$. **Ans** $|w - \frac{1}{2}| < \frac{1}{2}, v < 0$

Q.5 Find the image of the hyprbola $x^2 - y^2 = 1$, Under the transformation $w = \frac{1}{z}$. **Ans** $R^2 = \cos 2x$

Q.6 Find the bilinear transformation which maps the points z = 0, -i, -1 into w = i, 1, 0 respectively. Ans $w = i\frac{1+z}{1-z}$

Q.7 Find the fixed point for the following transformation.

(1) w = z, (2) w = 3z - 2, (3) w = 2z + 3, (4) $w = \frac{3z - 4}{z - 1}$

Q.8 Find the bilinear transformation which maps the points i, -i, 1, of the z-plane into $0, 1, \infty$, respectively.

Q.9 Define the Conformal mapping and give me one example.

Q.10 Let a rectangular domain R be bounded by x = 0, y = 0, x = 2, y = 1, determine the region R_1 in w-plane in which R is mapping under the transformation f(z) = z + (1 - 2i)**Q.11** Define the Bilinear Transformation with one example.

1