VEER BAHADUR SINGH PURVANCHAL **UNIVERSITY, JAUNPUR** (UTTAR PRADESH)

SYLLABUS OF **PRE-Ph.D. COURSE WORK AS PER NEP-2020 GUIDELINES**

SUBJECT: Genetics and Plant Breeding

Convener

Prof. (Dr.) G. Singh Prof. (Dr.) Manoj Kumar Singh Member

Dr. Prem Prakash Singh External Expert

Ser -

Prof. (Dr.) Sanjeev Singh External Expert

Veer Bahadur Singh Purvanchal University, Jaunpur (U.P.)

Syllabus of Pre-Ph.D. course work

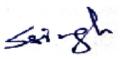
As per NEP-2020 guidelines

With effective from academic session 2022-23

Subject prerequisites: To study the subject- Genetics and Plant Breeding

- **Programme outcomes (POs)**: Students will able to get the thorough knowledge about the genetic architecture of crop plant, genome analysis technique and procedures to develop the high yielding crop varieties.
- PO1: Students will be able to establish the plant genome mapping, genome sequencing principles and techniques, etc.
- PO2: Students will be able to develop the hybrid varieties; understand the inheritance, nature and magnitude of gene action in crop plants, etc.
- PO3: Students will be able to familiar with issues related to the genetics and plant breeding in relation to enhance the crop productivity.

Programme specific outcomes (PSOs): Genetics and Plant Breeding-I & II.


- PSO1: Students will be able to get knowledge related to the selection in self and crosspollinating crops, biometrical technique in plant breeding, etc.
- PSO2: Students will be able to get knowledge related to genomes concept and complexity C-value paradox, repetitive and unique DNA.
- PSO3: Students will be able to describe and explain the concepts of analysis of genotype x environment interaction adaptability and stability; Models for GxE analysis and stability parameters.

List of all papers of Pre-Ph.D. course work or Post graduate diploma in Research (PGDR)

Year	Sem	Course	Course Title	Theory/	Credit	Max. Marks
		Code		Research		
		D0201301T	Advances in plant breeding	Theory	6	100
			systems and biometrical			[25(CIE)+75(UE)]
			genetics			
		D0201302T	Population genetics,	Theory	6	100
			genomics and plant genetic			[25(CIE)+75(UE)]
7	XIII		resources			
		D0201303T	Research Methodology,	Theory	4	100
			Research Publication Ethics			[25(CIE)+75(UE)]
			and Computer Applications			
		D0201304R	Research Project	Research	-	100
			-			[25(CIE)+75(UE)]

Low

2919123

Credit system:

- A four (4) credit theory course/paper will have four Lectures/periods (of one hour) in a week. In one full semester the course will be covered in 60 Lectures.
- Similarly, a six (6) credit theory course/paper will have six Lectures/periods (of one hour) in a week. In one full semester the course will be covered in 90 Lectures.

Continuous Internal Evaluation (CIE) of 25 marks:

- Continuous internal evaluation will be performed by the teacher/ course coordinator concerned.
- CIE shall be 25% of total assessment in a Theory paper and research project.
- 25 marks shall be distributed as 5 marks for attendance, 5 marks for presentation and assignment and remaining 15 marks for class test.

Marking system:

- All papers will have a total maximum mark of 100, including both CIE and University Examination (UE).Maximum marks of 25 will be allotted to CIE and 75 to UE in a theory paper/ research project.
- The CIE of the research project shall be evaluated by the research supervisor and cosupervisor (if any).
- 75 marks of **research project** shall be distributed as 50 marks (project work and presentation) and a viva voce of 25 marks.
- The evaluation (Max Marks 75 UE) of the research project shall be done by internal examiner/s (Supervisor and Co-supervisor (if any)) and one external examiner appointed by the University.

Research Project Submission:

- The evaluated research project report in two sets of hard copy (spiral binding) must be prepared. One copy of it shall be submitted to the university if it demands. A second copy of the evaluated research project report must be in the records of the college/research centre.
- The format of university Ph.D. thesis writing guidelines can be used as format of Research project writing guidelines.

Den

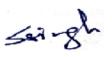
Ser 181

Programme: Post graduate diploma in Research (PGDR)		Year: seven (7) S	emester: XIII
	· · · · · ·	ject: Genetics and Plant Breeding	
Course Cod	le:	Course Title: Advances in plant breeding systems	and biometrical
D0201301T		genetics	
Course Ou	tcomes (COs)	I	
	nts will be able to get pollinated Crops	knowledge related to Principles and methodolo	gy for Self and
biome	etrical techniques in plar	derstand the techniques of hybrid varieties den nt breeding op QTL Mapping and strategies for QTL mappin	-
Credits: 6		Core Compulsory	
Max. Marl	ks: $25 (CIE) + 75(UE)$	Min. Passing marks: 55	
Total num	ber of lectures: Lectures	s-Tutorial-Practical (6 hours in a week) L-T-P: 6-0-0	(90 hr#)
Unit		Topics	No. of Lecture Hrs
Ι	Principles and metho	dology for Self-pollinated Crops:	15
	sources of variation Pedigree method,	nces of planned hybridization, pure line theory in pure line, pure line selection, mass selection bulk, single seed decent method, multiline and hybrid varieties.	L
II	Principles and metho	dology for Cross- pollinated crops:	15
		f cross pollinated crops, system of mating, nent methods, synthetic and composite varieties, varieties.	
III	Techniques of hybrid	varieties development:	18
	Genetic engineering and problems, use breeding. Conversion sterile concepts and Genetic Male Sterilit sensitive genetic ma Temperature sensitiv breeding. Apomixis a		
IV	Breeding for climate	change:	15
	flooding and submer disease and insect	ic stress, water stress, water use efficiency gence tolerance, Salt tolerance, Biotic stresses : pest resistance, Greenhouse gases and carbon og for bio- fortification.	

all paratalize Prsmal ser-gh

V	Biometrical techniques: Genetic diversity analysis - metroglyph, cluster and D ² analyses - Association analysis - phenotypic and genotypic correlations; Path analysis and Parent - progeny regression analysis. Generation mean analysis, mating design -Diallel, partial Diallel, line x tester analysis, NCD and TTC, concept of combining ability and gene action. Analysis of genotype x environment interaction- adaptability and stability. Model for G X. E analysis and stability parameters.	15
VI	QTL Mapping and MAS: QTL Mapping, strategies for QTL mapping, mapping population, Types of marker, Markar Assisted Selection and factor affecting MAS.	12

One credit is equivalent to 15 lecture hours as per NEP norms in theory classes. Number of hours in each unit 15 hours may vary as per the content of the unit.


Suggested Readings:

- Baxevanis AD & Ouellette BFF. 2001. Bioinformatics: A Practical Guide to the Analysis of Genes and Proteins. Wiley Interscience.
- 2. Brown TA. 2002. Genomes.
- Galas DJ & McCormack SJ. 2002. Genomic Technologies: Present andFuture. Calster Academic Press.
- 4. Jordan BR. 2001. DNA Microarrays: Gene Expression Applications. Springer- Verlag.
- 5. Liu BH. 1997. Statistical Genomics: Linkage, Mapping and QTL Analysis.CRS Press.
- Lynch M & Walsh B. 1998. Genetics and Analysis of Quantitative Traits. Sinauer Associates.
- Mount DW. 2001. Bioinformatics. Sequence and Genome Analysis. ColdSpring Harbor Laboratory Press.
- Palzkill T. 2002. Proteomics. Kluwer.Paterson AH. 1996. Genome Mapping in Plants. Academic Press.
- Pennington SR & Dunn MJ. 2002. Proteomics: From Protein Sequence toFunction. Viva Books.
- 10. Rampal JB. 2001. DNA Arrays: Methods and Protocols. Humana Press.
- Wiley-LISS.Caetano-Anolles G & Gresshoff PM. 1998. DNA Markers: Protocols, Applications and Overviews.
- 12. Wiley-VCH.Cantor CR & Smith CL (2004). Genomics. Wiley, New York.

59923

- 1. https://www.genome.gov/about-genomics/fact-sheets/A-Brief-Guide-to-Genomics
- 2. https://www.routledge.com/Genomics-Fundamentals-and-Applications
- 3. <u>https://core.ac.uk/download/pdf/211011238.pdf</u>
- 4. https://www.mdpi.com/2073-4395/10/3/439

-	ne:Post graduate	Year: Seven (7)	Semester: XIII
diploma	in Research (PGDR)	ect: Genetics and Plant Breeding	
<u> </u>	•		1 1
Course Code:		Course Title: Population genetics, genomics and	l plant genetic
D02013027		resources.	
	utcomes (COs)		
CO1: Stud	ents will be able to understa	and the facts about the mandelian population, fr	equency of gene
and g	genotypes and how to esti	imate the linkage disequilibrium.	
CO2: Stude	ents will be able to apply	the principles and techniques of convention	al approaches o
geno	me sequencing during res	search.	
conservati	on.	tand the knowledge base of plant genetic r	esources and it
Credits: 6		Core Compulsory	
Max. Mar	*ks: 25 (CIE) + 75(UE)	Min. Passing marks: 55	
Total nur	nber of lectures: Lectures	-Tutorial-Practical (6 hours in a week) L-T-P: 6-0-	0 (90 hr#
Unit		Topics	No. of
			Lecture Hrs.
Ι	Population: general co	nsideration:	15
		on, mendelian population, frequency of genes	
		s of changes: population size, differences in	
	8,		
		nigration and mutation.	
II	fertility and viability, 1		15
II	fertility and viability, r Hardy -Weinberg eq systems, random mat	migration and mutation. uilibrium. Hardy -Weinberg law, mating ting population, non random mating: self-	15
Ш	fertility and viability, n Hardy -Weinberg eq systems, random mat inbreeding coefficien	migration and mutation. uilibrium. Hardy -Weinberg law, mating ting population, non random mating: self- nt. Sib mating, Assortative mating and	15
	fertility and viability, n Hardy -Weinberg eq systems, random mat inbreeding coefficien	migration and mutation. uilibrium. Hardy -Weinberg law, mating ting population, non random mating: self-	
II III	fertility and viability, n Hardy -Weinberg eq systems, random mat inbreeding coefficien	migration and mutation. Juilibrium. Hardy -Weinberg law, mating ting population, non random mating: self- nt. Sib mating, Assortative mating and Estimation of linkage disequilibrium.	15
	fertility and viability, n Hardy -Weinberg eq systems, random mat inbreeding coefficien disassortative mating.	migration and mutation. puilibrium. Hardy -Weinberg law, mating ting population, non random mating: self- at. Sib mating, Assortative mating and Estimation of linkage disequilibrium.	
	fertility and viability, r Hardy -Weinberg eq systems, random mat inbreeding coefficien disassortative mating. Genomics: Introduction Introduction of pla	migration and mutation. puilibrium. Hardy -Weinberg law, mating ting population, non random mating: self- at. Sib mating, Assortative mating and Estimation of linkage disequilibrium.	

	value paradox, repetitive and unique DNA.	
IV	Genom sequencing: Principles and techniques of conventional approaches and next generation sequencing. Recent transgen free genome editing tools such as CRISPR-Cas 9 system, TALENS and ZFNs for crop improvement.	15
V	Plant Genetic Resources: Biodiversity and its conservation, concepts of natural reserves and natural gene banks. In-situ conservation of wild species. Ex-situ conservation: components, plant genetic resource conservation in gene banks, National gene banks.	15
VI	In- vitro storage and cryopreservation of germplasm. Concept and procedure for PGR management, germplasm characterization, evaluation and utilization, collections and registration of plant germplasm.	15

One credit is equivalent to 15 lecture hours as per NEP norms in theory classes. Number of hours in each unit 15 hours may vary as per the content of the unit.

Suggested Readings:

- Agarwal RL. 1996. Fundamentals of Plant Breeding and Hybrid SeedProduction. Oxford &IBH.
- 2. Allard RW. 1966. Principles of Plant Breeding. John Wiley & Sons.
- 3. Briggs FN & Knowles PF. 1967. Introduction to Plant Breeding. Reinhold.
- Fehr WR. 1987. Principles of Cultivar Development: Theory and Technique. Vol I. Macmillan.
- 5. Hayes HK, Immer FR & Smith DC. 1955. Methods of Plant Breeding. McGraw-Hill.
- 6. Falconer DS & Mackay J. 1998. Introduction to Quantitative Genetics. Longman. Mandal AK, Ganguli PK & Banerji SP. 1995. Advances in Plant Breeding. Vol. I, II. CBS.
- 7. Mather K & Jinks JL. 1971. Biometrical Genetics. Chapman & Hall.
- 8. Mather K & Jinks JL. 1983. Introduction to Biometrical Genetics. Chapman & Hall.
- Nadarajan N & Gunasekaran M. 2005. Quantitative Genetics and Biometrical Techniques in Plant Breeding. Kalyani.
- 10. Naryanan SS & Singh P. 2007. Biometrical Techniques in Plant Breeding. Kalyani.
- 11. Richards AJ. 1986. Plant Breeding Systems. George Allen & Unwin.
- Sharma JR. 1994. Principles and Practice of Plant Breeding. TataMcGraw-Hill. Simmonds NW. 1979. Principles of Crop Improvement. Longman.
- 13. Singh BD. 1997. Plant Breeding: Principles and Methods. 5 Ed., Kalyani. Singh P. 1996. Essentials of Plant Breeding. Kalyani.

DM 1/ 2919/23

Ser -gh

- 14. Singh P & Narayanan SS. 1993. Biometrical Techniques in Plant Breeding. Kalyani.
- 15. Singh RK & Choudhary BD. 1987. Biometrical Methods in QuantitativeGenetics. Kalyani.
- 16. Welsh JR. 1981. Fundamentals of Plant Genetic and Breeding. John Wiley. Williams W. 1964. Genetical Principles and Plant Breeding. Blackwell.
- https://www.http://www.springer.com/us/book/9783319225203
- https://www.cabidigitallibrary.org/doi/book/10.1079/9780851996011.0000 •
- https://onlinelibrary.wiley.com/doi/book/10.1002/9781118313718 •

Programme: Post graduate diploma in	Year: seven (7)	Semester: XIII			
Research (PGDR)					
Subject: Genetics and Plant Breeding					
Course Code: Course Title: Research Methodology, Research Publication Ethics and					
D0201303T	D0201303T Computer Applications				
Course Outcomes (CC	Ds)				
CO1: With the help of t	his course, students will be able to decide the research field	ld, topic, design,			
and pros and cons	of research, sampling, and data collection techniques.				
CO2: The student will b	be able to understand the research process and acquire the	skill of writing			
research articles.					
	nable you to execute the best practices, morals, and ethical	l values in			
	and avoid publication misconduct.				
-	his course, students will be able to learn about the standar	ds of journals for			
• • • •	ications of their research work.				
	the students will be able to learn how to use computers ar	nd different			
	re for manuscript writing.				
	enable the students to learn about reference management a				
	ademic integrity using scientific tools. They will be famili	iar with the			
1	nachines from computer hazards.				
Credits: 4	Core Compulsory				
Max. Marks: 25	Min. Passing marks: 55				
(CIE) + 75 (UE)					
Total number of lectur	res: Lectures-Tutorial-Practical (4 hours in a week) L-T-P: 4-0-	-0 (60 hr)			
Unit	Topics	No. of			
		Lecture			
Ι	Desearch Mathadalagy	Hrs. 12			
I	Research Methodology Definition, and Objectives, Motivation and Significan				
	Research, Types of Research, Truth and Facts of Res	search,			
	Similarity and Contrast in Literary Research and Sci	ientific			
	Research, Research and Criticism, Research Problem and Re	esearch			
Colu	PRINTER String Ser -	sh			

Lohn 10/2319123

	Design, Sampling Design and Methods of Data Collection.	
II	Research standards: Layout of the Research Report, Research Process: subject Selection,	12
	Outline of the Research, Review of Literature, Material Collection;	
	Testing and Classification, Analysis, Discussion and Conclusions,	
	Precautions in Writing Synopsis/Research Paper/Thesis/Research	
	Report.	
III	Philosophy, Ethics, Scientific Conducts and misconduc	08
	Moral Philosophy, Nature of Moral Judgments and Reactions,	
	Publication Ethics, Best Practices/Standards Setting Initiatives and	
	Guidelines: Committee on Publication Ethics (COPE), World	
	Association of Medical Editors (WAME) etc., Intellectual Honesty	
	and Research Integrity: Falsification, Fabrication and Plagiarism	
	(FFP), Open Access Publishing, and Publication Misconduct.	
IV	Databases and Research Metrics Databases: Indexing Databases: Web Of	08
	Science, Scopus etc., Research Metrics: Impact Factor of Journal as	
	Per Journal Citation Report, SNIP, SJR, IPP, Cite Score; Metrics: h-	
	Index, g-Index, i-10 Index, and Altimetric.	
V	Fundamentals of Computers and application Softwares Types Of Computers, Computer Peripherals and internal component,	12
	Types of Operating Systems, Web Browser, Web Search Engine,	
	Spreadsheet Processing, Presentation (MS PowerPoints Preparation	
	or Beamer or Libre Office (Optional), Project/Thesis/Report	
	writing, Using MS-Word or LaTeX or LibreOffice documentation	
	style Labelling, References Style, Footnotes etc.	
VI	Scientific Softwares	08
	Use of Reference Management Software Like Mendeley, Zotero,	
	Reference Manager, Endnote, Authorea Etc. Anti-Plagiarism	
	Software Like Turnitin, iAuthenticate, Urkund, Ebooks and Virtual	
	Library, UGC-Infonet, Computer Hazards and Security	

When the 2919123 Pringe ser-gh

Suggested Readings:

- 1. C.R. Kothari, Research methodology Methods and Techniques, 4th Edition, New Age International (P) Ltd. Publisher, 2014.
- 2. W. Creswell, Research Design, Qualitative, Quantitative and mixed method approaches, 3rd Edition, Sage Publications, Inc.
- 3. D.B. Resnik, (2011) What is ethics in research & Why is it important. National institute of Environmental Health Science. 1-10 Retrieved from https://www.niehs.nih.gov/research/resources/bioethics/whatis/index.cfm
- 4. Indian National Science Academy (INSA), Ethics in Science Education, Research and ISBN:978-81-939482-1-7. Governance (2019),https://www.insaindia.res.in/pdf/Ethics_Book.pdf
- 5. Reema Thareja (2019) Fundamentals Of Computers (2nd Edition), Oxford University Press
- 6. Microsoft Office 365 : A complete Guide to Master Word, Excel, and PowerPoint 365 for Beginners, Matt Vic
- 7. Leslie Lamport, LaTeX, A Document Preparation System, 2nd Edition, Addison-Wesley Professional Publisher, July, 1994.
- 8. Latex tutorials <u>https://www.tug.org/twg/mactex/tutorials/ltxprimer-1.0.pdf</u>
- 9. Libre Office tutorial: <u>www.documentation.libreoffice.org/en/english-documentation</u>

Suggested equivalent online courses: <u>https://epgp.inflibnet.ac.in/</u>

In 1/2/19/23

Ser och

Programme: Post graduate	Year: Seven (7)	Semester: XIII
diploma in Research (PGDR)		
Subject: Genetics and Plant Breeding		
Course Code:	Course Title: Research Project	
D0201304R		
Course Outcomes (COs)		
CO1: Student will able to know how to write review of literature, references, data analysis,		
experimental design implementation, etc.		
CO2: Student will able to write review paper, research paper, popular article, etc for the		
publications consideration in national and international journals.		

Credits: Non -Credit	Core Compulsory
Max. Marks: 25 (CIE) + 75(UE)	Min. Passing marks: 55

Suggested Readings:

http://ecourses.icar.gov.in. http://www.apsnet.org http://ecoursesonline.iasri.res.in

Ser.

Prof. (Dr.) G. Singh Prof. (Dr.) Manoj Kumar Singh Dr. Prem Prakash Singh Convener Member

External Expert

Prof. (Dr.) Sanjeev Singh External Expert

https://us02web.zoom.us/j/82992936867?pwd=Y21Nd3FEZ1VBUUdZM3FIRGMrNzQ3Zz09