Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Numerical solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Indian Institute of Space Science and Technology, Trivandrum
July 28, 2016

Initial value problems:

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

We will focus on the following initial value problem: Find the function $y(x)$ that satisfies

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =f(x, y), \quad a \leq x \leq b \tag{1}\\
y(a) & =\alpha
\end{array}\right\}
$$

Numerical
solution of
differential
equations
Numerical
Techniques
and
programming
in MATLAB
Sarvesh
Kumar

Remark: If we know how to deal with first order differential equations, then we can also attempt to solve nth order differential equations. Because it is possible to write nth order differential equations into a set of n first order differential equations.

Uniqueness of the solution:

Numerical
solution of differential
equations
Numerical
Techniques and
programming in MATLAB

We know that under some restrictions on the given function f, Picard's Theorem guarantee existence of unique local solution. But we are interested in uniqueness of the global solution (the solution where the differential equation is defined) Let us recall the following theorem:

Theorem

- Let $D:=\{(x, y) \mid a \leq x \leq b,-\infty \leq y \leq \infty\}$.
- f is continuous on D.
- f is Lipschitz continuous in y on D.

OR
$\frac{\partial f}{\partial y}$ is continuous on D.
\Rightarrow (1) has a unique solution for $a \leq x \leq b$.

Numerical
solution of differential
equations
Numerical
Techniques and
programming in MATLAB

Sarvesh
Kumar

Recall: $f(x, y)$ is said to be Lipschitz continuous in y on a set $D \subset \mathbb{R}^{2}$ if $\exists L>0$ such that

$$
\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right| \leq L\left|y_{1}-y_{2}\right|
$$

whenever $\left(x, y_{1}\right),\left(x, y_{2}\right) \in D$.
Ex. $f(x, y)=|y|, D:=\{(x, y)| | x|\leq 1,|y| \leq 1\}, f$ is Lipschitz continuous on D with $L=1$.

Ex. $f(x, y)=\sqrt{y}, D:=\{(x, y)| | x|\leq 1,|y| \leq 1\}, f$ is NOT
Lipschitz continuous on D.
Taking $y_{1}=0$ and y_{2} as arbitrary, then

$$
\frac{\left|f\left(x, y_{1}\right)-f\left(x, y_{2}\right)\right|}{\left|y_{1}-y_{2}\right|}=\frac{\sqrt{y_{1}}}{y_{1}}=\frac{1}{\sqrt{y_{1}}} \rightarrow \infty
$$

as $y_{1} \rightarrow 0$.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Remark: Of course, Lipschitz continuity is a mild condition in comparison to $\frac{\partial f}{\partial y}$:
Consider $f(x, y)=|y|, D:=\left\{(x, y)| | x|\leq 1,|y| \leq 1\}, \frac{\partial f}{\partial y}\right.$ does not exist at $(0,0)$. However, $|y|$ is Lip. continuous with Lip. constant $L=1$ (can you see this?)

Numerical
solution of differential
equations
Numerical
Techniques and
programming in MATLAB

■ Well-posed problem: We say (1) is well-posed if

- (1) has a unique solution,
- solution depends on the given data, i.e., f and α.

■ Remark: Under the conditions of Theorem 1, (1) is well-posed.
■ Remark: It would be difficult to find an analytic/exact solution of (1) in a closed form. Therefore, we look for suitable numerical scheme which provide an approximate solution.

- Idea: Discretize the domain (interval) and the given equation.

Numerical
solution of differential
equations
Numerical
Techniques
and
programming in MATLAB

Sarvesh
Kumar

■ Notations:
■ $y_{i}=y\left(x_{i}\right)$: exact solution at point x_{i}.
■ $w_{i}=w\left(x_{i}\right)$: numerical solution at point x_{i}.
We write $w_{i} \approx y_{i}=y\left(x_{i}\right)$.

- Error:

1 How well numerical scheme approximates (1)?
2 How well solution of numerical scheme (w_{i}) approximates the solution of (1)

$$
\max _{1 \leq i \leq N}\left|y_{i}-w_{i}\right|=?
$$

Some numerical schemes/methods

Numerical
solution of differential
equations
Numerical Techniques
and
programming in MATLAB

Sarvesh
Kumar

- Recall: Our differential equation

$$
\left.\begin{array}{rl}
\frac{d y}{d x} & =f(x, y), \quad a \leq x \leq b \tag{2}\\
y(a) & =\alpha
\end{array}\right\}
$$

Discretize the interval as $x_{i}=x_{0}+i h, x_{0}=a$. Integrate (2) from x_{0} to x.

$$
\begin{align*}
\int_{x_{0}}^{x} \frac{d y}{d x} d x & =\int_{x_{0}}^{x} f(t, y(t)) d t \\
\Rightarrow y(x) & =\alpha+\int_{x_{0}}^{x} f(t, y(t)) d t . \tag{3}
\end{align*}
$$

■ Remark: (2) and (3) are equivalent.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

- Basic idea: Using y_{0}, we find y_{1}, then $y_{2}, .$. and so on.

■ First approach: Approximate the integral involved in (3) (but we don't know $y(x)$).
■ Second approach: Approximate the derivatives involved in (2).

- Recall:

$$
\begin{aligned}
& \text { - } \int_{a}^{b} f(x)=(b-a) f(a) . \\
& \text { - } \int_{a}^{b} f(x)=\frac{(b-a)}{2}[f(a)+f(b)] . \\
& -\int_{a}^{b} f(x)=\frac{(b-a)}{6}\left[f(a)+4 f\left(\frac{a+b}{2}\right)+f(b)\right] .
\end{aligned}
$$

Numerical
solution of differential equations
Numerical Techniques and programming in MATLAB

Sarvesh Kumar

We write

- Method I: $\int_{x_{0}}^{x_{1}} f(t, y(t)) d t=h f\left(x_{0}, y\left(x_{0}\right)\right)=h f\left(x_{0}, y_{0}\right)$
- Method II: $\int_{x_{0}}^{x_{1}} f(t, y(t)) d t=\frac{h}{2}\left[f\left(x_{0}, y_{0}\right)+f\left(x_{1}, y_{1}\right)\right]$
- Method III:

$$
\int_{x_{0}}^{x_{1}} f(t, y(t)) d t=\frac{h}{6}\left[f\left(x_{0}, y_{0}\right)+4 f\left(x_{1 / 2}, y_{1 / 2}\right)+f\left(x_{1}, y_{1}\right)\right],
$$

where $x_{1 / 2}=\frac{x_{0}+x_{1}}{2}$ and $y_{1 / 2}=\frac{y_{0}+y_{1}}{2}$.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Using these methods we can compute w_{1} with the help of $w_{0}=\alpha$ in the following manner:

■ Method I: $w_{1}=w_{0}+h f\left(x_{0}, w_{0}\right)$

- Method II: $w_{1}=w_{0}+\frac{h}{2}\left[f\left(x_{0}, w_{0}\right)+f\left(x_{1}, z_{1}\right)\right]$ (Use method I to compute w_{1}),i.e., $z_{1}=w_{0}+h f\left(x_{0}, w_{0}\right)$
- Method III:

$$
w_{1}=\frac{h}{6}\left[f\left(x_{0}, w_{0}\right)+4 f\left(x_{1 / 2}, w_{1 / 2}\right)+f\left(w_{1}, w_{1}\right)\right]
$$

. Problem is we must have $w_{1 / 2}$.

Euler's Method

Numerical
solution of differential equations
Numerical Techniques and programming in MATLAB

Sarvesh Kumar

We have the following schemes:
■ Scheme 1: $w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right), i=0,1,2, .$. (Euler's method).
■ Scheme 2: $w_{i+1}=w_{i}+\frac{h}{2}\left[f\left(x_{i}, w_{i}\right)+f\left(x_{i+1}, w_{i+1}\right)\right]($ Modified Euler's method).
Here, w_{i+1} is unknown.
Idea: Use Euler's method to compute w_{i+1}. Write

$$
w_{i+1}=w_{i}+\frac{h}{2}\left[f\left(x_{i}, w_{i}\right)+f\left(x_{i+1}, z_{i+1}\right)\right]
$$

where $z_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)$.

Numerical
solution of differential
equations
Numerical
Techniques and
programming in MATLAB

Sarvesh Kumar

Remark: Method III leads to Runge-Kutta method. After having appropriate approximation of $w_{1 / 2}$.

■ Scheme 3:

$$
w_{i+1}=w_{i}+\frac{1}{6}\left[m_{1}+2 m_{2}+2 m_{3}+m_{4}\right],
$$

where

- $m_{1}=h f\left(x_{i}, w_{i}\right)$
- $m_{2}=h f\left(x_{i}+\frac{h}{2}, w_{i}+\frac{m_{1}}{2}\right)$
- $m_{3}=h f\left(x_{i}+\frac{h}{2}, w_{i}+\frac{m_{2}}{2}\right)$
- $m_{4}=h f\left(x_{i}+h, w_{i}+m_{3}\right)$

This method is called Runge-Kutta method. One of the best method for solving differential equations.

Numerical solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh
Kumar

$$
w_{i+1}=w_{i}+\left[\frac{h}{4} f\left(x_{i}, w_{i}\right)+\frac{3 h}{4} f\left(x_{i}+\frac{2 h}{3}, \tilde{w}_{i}\right)\right]
$$

where

$$
\tilde{w}_{i}=w_{i}+\frac{2 h}{3} f\left(x_{i}, w_{i}\right)
$$

This is called optimal RK-2.

Schemes based on second approach (Numerical differentiation) :

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Taylor's series:

$$
\begin{aligned}
f(x)= & f\left(x_{0}\right)+\left(x-x_{0}\right) f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{2!} f^{\prime \prime}\left(x_{0}\right)+. . \\
& +\frac{\left(x-x_{0}\right)^{n}}{n!} f^{n}\left(x_{0}\right)+E
\end{aligned}
$$

$E=\frac{\left(x-x_{0}\right)^{n+1}}{(n+1)!} f^{n+1}(\xi)$, for some ξ lying between x_{0} and x.

Numerical
solution of
differential
equations
Numerical Techniques and programming in MATLAB

Problem: We do not know ξ, hence it would be difficult to compute error with this formula. However, this can be used in order to find the upper bound of the error, i,e., we have a number in hand such that error should not exceed by this number.

Numerical
solution of differential equations
Numerical
Techniques
and
programming in MATLAB

Sarvesh Kumar

Assume that the solution of (1) is smooth (have continuous derivative of order $n+1$ on the interval (a, b) : Then

$$
\begin{align*}
y(x)= & y\left(x_{i}\right)+\left(x-x_{i}\right) y^{\prime}\left(x_{i}\right)+\frac{\left(x-x_{i}\right)^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\ldots \\
& +\frac{\left(x-x_{i}\right)^{n}}{n!} y^{n}\left(x_{i}\right)+\text { Error } \tag{4}
\end{align*}
$$

Error $=\frac{\left(x-x_{i}\right)^{n+1}}{(n+1)!} y^{n+1}(\xi)$, for some ξ lying between x_{i} and x.

Numerical
solution of differential
equations
Numerical
Techniques
and
programming in MATLAB

Sarvesh
Kumar

Take $x=x_{i+1}$ in (4), then we have

$$
\begin{align*}
y_{i+1}= & y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\ldots+\frac{h^{n}}{n!} y^{n}\left(x_{i}\right) \\
& +\frac{h^{n+1}}{(n+1)!} y^{n+1}(\xi) \tag{5}
\end{align*}
$$

for some ξ lying between x_{i} and x_{i+1}.
Idea: Since h is small $h^{k} \rightarrow 0, k>0$, we truncate this series after some terms. This would leads to different scheme. we expect that having more number of terms would provide more accurate solution. Let us try !

Numerical
solution of differential equations
Numerical
Techniques and
programming in MATLAB

Sarvesh
Kumar

■ Method 1. Take $n=1$,

$$
\begin{aligned}
y_{i+1} & =y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}(\xi) \\
& =y_{i}+h f\left(x_{i}, y_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}(\xi)
\end{aligned}
$$

Therefore, the scheme is $w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)$. Same is Euler Method. (did you get it?).
■ Method 2. Take $n=2$,

$$
\begin{aligned}
y_{i+1} & =y_{i}+h y^{\prime}\left(x_{i}\right)+\frac{h^{2}}{2!} y^{\prime \prime}\left(x_{i}\right)+\frac{h^{3}}{3!} y^{\prime \prime \prime}(\xi) \\
& =y_{i}+h f\left(x_{i}, y_{i}\right)+\left.\frac{h^{2}}{2!} \frac{d}{d x} f(x, y)\right|_{x=x_{i}}+\frac{h^{3}}{3!} y^{\prime \prime \prime}(\xi)
\end{aligned}
$$

Scheme is $w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)+\frac{h^{2}}{2!} \frac{d}{d x} f\left(x_{i}, w_{i}\right)$.
We have used $y^{\prime}=\frac{d y}{d x}=f(x, y)$

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Similarly, we have

- Method 3. For $n=3$, scheme is

$$
w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)+\frac{h^{2}}{2!} \frac{d}{d x} f\left(x_{i}, w_{i}\right)+\frac{h^{3}}{3!} \frac{d^{2}}{d x^{2}} f\left(x_{i}, w_{i}\right) .
$$

■ Method 4. For $n=4$, scheme is

$$
\begin{aligned}
w_{i+1}= & w_{i}+h f\left(x_{i}, w_{i}\right)+\frac{h^{2}}{2!} \frac{d}{d x} f\left(x_{i}, w_{i}\right)+\frac{h^{3}}{3!} \frac{d^{2}}{d x^{2}} f\left(x_{i}, w_{i}\right) \\
& +\frac{h^{4}}{4!} \frac{d^{3}}{d x^{3}} f\left(x_{i}, w_{i}\right) .
\end{aligned}
$$

Numerical
solution of differential
equations
Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Example

$$
\begin{aligned}
\frac{d y}{d x} & =y-x^{2}+1,0 \leq x \leq 2 \\
y(0) & =0.5, h=0.2
\end{aligned}
$$

find $y(0.6)$.
Soln: We have $x_{1}=0.2, x_{2}=0.4, x_{3}=0.6$. Euler's scheme:

$$
w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)
$$

We want to find w_{3}. For
$i=0, w_{1}=w_{0}+h f\left(x_{0}, w_{0}\right)=0.5+0.2\left(0.5^{2}-0+1\right)=0.8$

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar
$w_{2}=w_{1}+h f\left(x_{1}, w_{1}\right)=1.15, \quad w_{3}=w_{2}+h f\left(x_{2}, w_{2}\right)=1.55$.

Euler's modified method:

$$
\begin{aligned}
w_{1} & =w_{0}+\frac{h}{2}\left[f\left(x_{0}, w_{0}\right)+f\left(x_{1}, z_{1}\right)\right] \\
z_{1} & =w_{0}+h f\left(x_{0}, w_{0}\right)=0.5 \\
w_{1} & =0.5 \frac{h}{2}\left[\left(w_{0}^{2}-x_{0}^{2}+1\right)+\left(z_{1}^{2}-x_{1}^{2}+1\right)\right]
\end{aligned}
$$

Similarly, we can find w_{2} and w_{3}.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Using Taylor's series:

■ $n=1 \Rightarrow$ Euler method.

- $n=2$,

$$
\begin{gathered}
w_{i+1}=w_{i}+h f\left(x_{i}, w_{i}\right)+\frac{h^{2}}{2!} \frac{d}{d x} f\left(x_{i}, w_{i}\right) \\
\begin{aligned}
f(x, y) & =y-x^{2}+1 \\
\frac{d f}{d x} & =\frac{d y}{d x}-2 x+1=f(x, y)-2 x+1 \\
& =\left(y-x^{2}+1\right)-2 x+1 \\
\frac{d^{2} f}{d x^{2}} & =f(x, y)-2 x-2=\left(y-x^{2}+1\right)-2 x-2
\end{aligned}
\end{gathered}
$$

Numerical solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

$$
w_{1}=w_{0}+h f\left(x_{0}, w_{0}\right)+\frac{h^{2}}{2!}\left[\left(w_{0}+x_{0}^{2}+1\right)-2 x_{0}+1\right]
$$

$$
w_{1}=0.83, w_{2}=1.21, w_{3}=1.65 . \text { For } n=4,
$$

$$
w_{1}=0.82, w_{2}=1.21, w_{3}=1.64 .
$$

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

- Major disadvantages of Taylor's Series method of higher order is the evaluation of the derivatives.
- Question: What are the advantages?

■ Answer: We will see in moment.

Error

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Local truncation error: The amount by which exact solution satisfies the numerical scheme.

One step method: $\frac{w_{i+1}-w_{i}}{h}=\phi\left(f, x_{i}, w_{i}, h\right)$
Euler's method: $\frac{y_{i+1}-y_{i}}{h}=f\left(x_{i}, y_{i}\right)+\frac{h}{2} f^{\prime}(\xi, y(\xi))$,

$$
\begin{aligned}
\tau_{i} & =h f^{\prime}(\xi, y(\xi)) \\
\tau_{i} & =h y^{\prime \prime}(\xi)
\end{aligned}
$$

Taylor's series $\tau_{i}=\mathcal{O}\left(h^{n}\right)$.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Consistent: If $\tau_{i} \rightarrow 0$ as $h \rightarrow 0$.
Convergence: $\lim _{h \rightarrow 0} \max _{1 \leq i \leq N}\left|y_{i}-w_{i}\right|=0$.
Stability: Let \tilde{w}_{i} be the solution of

$$
\begin{aligned}
\frac{d y}{d x} & =f(x, y), a \leq x \leq b \\
y(a) & =\tilde{\alpha}
\end{aligned}
$$

Then $\left|\tilde{w}_{i}-w_{i}\right| \leq K\left(x_{i}\right)|\tilde{\alpha}-\alpha|$.
Order of convergence: If τ_{i} is $\mathcal{O}\left(h^{p}\right)$. Then the scheme has p order of convergence.

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

■ We look for high order of convergence.

- Note that we can increase order of convergence of the Taylor series method by adding more numbers of terms in the Taylor series.
■ This can be think of an advantage of Taylor series method.

Theorem

Convergence \Leftrightarrow Consistency + Stability.

Numerical
solution of differential
equations
Numerical
Techniques and programming in MATLAB

Sarvesh
Kumar

Multistep method:

■ We have seen, to compute w_{i+1}, we use only w_{i}. In particular, to find w_{1} we need only w_{0}.
■ If we need w_{i-2}, w_{i-1}, w_{i} to compute w_{i+1}, then this method is called multistep method. Here 3-step method.
Derivation of multi-step method: $\frac{d y}{d x}=f(x, y)$. Integrate this equation from x_{i} to x_{i+1}

$$
\begin{align*}
\int_{x_{i}}^{x_{i+1}} \frac{d y}{d x} & =\int_{x_{i}}^{x_{i+1}} f(x, y(x)) d x \tag{6}\\
y_{i+1}-y_{i} & =\int_{x_{i}}^{x_{i+1}} f(x, y(x)) d x \tag{7}
\end{align*}
$$

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Idea: $f(x, y(x)) \approx P_{m}$
Two step method: To compute w_{i+1}, we need w_{i}, w_{i+1}

$$
f(x, y(x)) \approx P_{1}
$$

Write P_{1} by using x_{i} and x_{i-1}.

$$
\begin{aligned}
& P_{1}=\frac{x-x_{i-1}}{x_{i}-x_{i-1}} f\left(x_{i}, y_{i}\right)+\frac{x-x_{i}}{x_{i-1}-x_{i}} f\left(x_{i-1}, y_{i-1}\right)+\frac{5 h^{3}}{12} y^{\prime \prime \prime}(\xi) \\
& \int_{x_{i}}^{x_{i+1}} P_{1} d x=\frac{3 h}{2} f\left(x_{i}, y_{i}\right)+\left(\frac{-h}{2}\right) f\left(x_{i-1}, y_{i-1}\right)
\end{aligned}
$$

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

Scheme:

$$
\begin{aligned}
& w_{i+1}=w_{i}+\frac{3 h}{2} f\left(x_{i}, w_{i}\right)-\frac{h}{2} f\left(x_{i-1}, w_{i-1}\right) \\
& \tau_{i}=\mathcal{O}\left(h^{2}\right)
\end{aligned}
$$

Two step Adams-Bashforth method:

$$
w_{2}=w_{1}+\frac{3 h}{2} f\left(x_{1}, w_{1}\right)-\frac{h}{2} f\left(x_{0}, w_{0}\right)
$$

To compute w_{1}, one can use any method for which $\tau_{i}=\mathcal{O}\left(h^{2}\right)$. (Second order Taylor's series method)

Numerical
solution of differential equations Numerical Techniques and programming in MATLAB

Sarvesh Kumar

It is very hard to say which method is the best, it depends what you want? Best method for us would

- Esay to implement

■ High order convergence.
There is no RAMA's ARROW which can solve any differential equations

Thank you for your attention!

