Counting Sort

By: Dr. Surjeet Kumar

Dept. of Computer Application
Source: “Introduction to Algorithms” PHI 34 Editi

by Thomas H. Cormen & Others.




ing sort

‘ounting sort assumes that each of the n input elements 1s an integer in the range
 to k, for some integer k. When k = O(n), the sort runs in ©(n) time.

Counting sort determines, for each input element x, the number of elements less
han x. It uses this information to place element x directly into its position in the
utput array. For example, if 17 elements are less than x, then x belongs in output
osition 18. We must modify this scheme slightly to handle the situation in which
everal elements have the same value, since we do not want to put them all in the
ame position.

In the code for counting sort, we assume that the input is an array A[l ..n], and
hus A.length = n. We require two other arrays: the array B[l..n] holds the
orted output, and the array C[0. . k] provides temporary working storage.




1 2 3 4 5 6 7 8

®

Figure The operation of COUNTING-SORT on an input array A[l..8], where each element
of A is a nonnegative integer no larger than k = 5. (a) The array A and the auxiliary array C after
line 5. (b) The array C after line 8. (c)-(e) The output array B and the auxiliary array C after one,
two, and three iterations of the loop in lines 10-12, respectively. Only the hghtly shaded elements of
array B have been filled in. (f) The final sorted output array B.




COUNTING-SORT(A, B, k)

1 let C[0..k] be a new array

2 fori =0tok

3 Ciil.=.0

4 for j = 1to A.length

5 ClA[jll = C[A[j]] + 1

6 // Cli] now contains the number of elements equal to ;.
7 fori =1tok

8 Cli] = Cli]+ CJ[i — 1]

9 // C[i] now contains the number of elements less than or equal to .
10 for j = A.length downto 1

11 B[C[A[j]]] = A[j]

12 ClA[j]] = Cl[A[j]] =1

Figure illustrates counting sort. After the for loop of lines 2-3 initializes the
array C to all zeros, the for loop of lines 4-5 inspects each input element. If the
value of an input element is i, we increment C[i]. Thus, after line 5, C [i] holds
the number of input elements equal to i for each integeri = 0, 1,. .., k. Lines 7-8
determine for eachi = 0, 1, ...,k how many input elements are less than or equal
to i by keepmg a running sum of the array C.




Finally, the for loop of lines 10—12 places each element A[;] into its correct
sorted position in the output array B. If all n elements are distinct, then when we
first enter line 10, for each A[j], the value C[A[j]] is the correct final position
of A[j] in the output array, since there are C[A[/]] elements less than or equal
to A[j]. Because the elements might not be distinct, we decrement C[A[/]] each
time we place a value A[j] into the B array. Decrementing C[A[/]] causes the
next input element with a value equal to A[j], if one exists, to go to the position
immediately before A[j] in the output array. |

How much time does counting sort require? The for loop of lines 2-3 takes
time ®(k), the for loop of lines 4-5 takes time ® (1), the for loop of lines 7-8 takes
time ®(k), and the for loop of lines 10—12 takes time ®(n). Thus, the overall time
is ®(k + n). In practice, we usually use counting sort when we have k = O(n), in
which case the running time is ®(n).

Counting sort beats the lower bound of €2(n 1g n) proved in Section 8.1 because
it is not a comparison sort. In fact, no comparisons between input elements occur
anywhere in the code. Instead, counting sort uses the actual values of the elements .
to index into an array. The €2(n lg n) lower bound for sorting does not apply when
we depart from the comparison sort model.

An important property of counting sort is that it is stable: numbers with the same
value appear in the output array in the same order as they do in the input array. That
is, it breaks ties between two numbers by the rule that whichever number appears
first in the input array appears first in the output array. Normally, the property of
stability is important only when satellite data are carried around with the element
being sorted. Counting sort’s stability is important for another reason: counting
sort is often used as a subroutine in radix sort. As we shall see in the next section,
in order for radix sort to work correctly, counting sort must be stable.




