Merge Sort

By: Dr. Surjeet Kumar

Dept. of Computer Application
Source: “Introduction to Algorithms” PHI 34 Editi

by Thomas H. Cormen & Others.

T'he divide-and-conquer approach

Many useful algorithms are recursive in structure: to solve a given problem, they
call themselves recursively one or more times to deal with closely related sub-
problems. These algorithms typically follow a divide-and-conquer approach: they
reak the problem into several subproblems that are similar to the original prob-
lem but smaller in size, solve the subproblems recursively, and then combine these
solutions to create a solution to the original problem,

The divide-and-conquer paradigm involves three steps at cach level of the recur-
101

Divide the problem into a number of subproblems that are smaller instances of the
same problem.

Lonquer the subproblems by solving them recursively. If the subproblem sizes are
small enough, however, just solve the subproblems in a straightforward manner,

_ombine the solutions to the subproblems into the solution for the original prob-
lem.

The merge sort algorithm closely follows the divide-and-conquer paradigm. In-
tuitively, it operates as follows,

Divide: Divide the n-element sequence to be sorted into two subsequences ofn/2
elements each.

Conquer: Sort the two subsequences recursively using merge sort.
Combine: Merge the two sorted subsequences to produce the sorted answer,

The recursion “bottoms out” when the sequence to be sorted has length 1, in which
case there is no work to be done, since every sequence of length 1 is already in
sorted order.,

The key operation of the merge sort algorithm is the merging of two sorted
sequences in the “combine™ step. We merge by calling an auxiliary procedure
MERGE(A, p.q.r), where A is an array and p, ¢, and r are indices into the array
such that p = g < r. The procedure assumes that the subarrays A[p..q] and
Alg + 1..r] are in sorted order. It merges them to form a single sorted subarray
that replaces the current subarray A[p . .r|.

Our MERGE procedure takes time ®(n), where n = r — p -+ 1 1s the total
number of elements being merged, and it works as follows, Returning to our card-
playing motif, suppose we have two piles of cards face up on a table. Each pile is
sorted, with the smallest cards on top. We wish to merge the two piles into a single
sorted output pile, which is to be face down on the table. Our basic step consists
of choosing the smaller of the two cards on top of the face-up piles, removing it
from itsepile (which exposes a new top card), and placing this card face down onto

utput pile. We repeat this step until one input pile 15 empty, at which time
st take the remaining input pile and place it face down onto the output pile.
yutationally, each basic step takes constant time, since we are comparing just
vo top cards. Since we perform at most n basic steps, merging takes (1)

e following pseudocode implements the above idea, but with an additional
that avoids having to check whether either pile 1s empty in each basic step.
lace on the bottom of each pile a senfinel card, which contains a special value
ve use to simplify our code. Here, we use oo as the sentinel value, so that
ever a card with oc is exposed, it cannot be the smaller card unless both piles
their sentinel cards exposed. But once that happens, all the nonsentinel cards
already been placed onto the output pile. Since we know in advance that
ly r — p + 1 cards will be placed onto the output pile, we can stop once we
performed that many basic steps.

let L[1..n, + 1] and R[1..n> + 1] be new arrays
fori = 1 to n,
Lli] = A[p +i — 1]
for j = 1 ton,
R[j] = Alg + j]
Liny+41] = oo
f‘f[ﬂ'g = I] =
g
J =1
fork = ptor
it L[i] = R[/]
Alk] = Lii]
i =1i-+1
else Alk] = R|/]
B

detail, the MERGE procedure works as follows. Line | computes the length 1,
e subarray A[p..g], and line 2 computes the length n7; of the subarray
+ 1..r]. We create arrays L and R (“left” and *right’”), of lengths n, + |
n» + 1, respectively, in line 3; the extra position in each array will hold the
nel. The for loop of lines 4—5 copies the subarray Alp..g] into L[1..n,].
the for loop of lines 6-7 copies the subarray Alg -+ 1..r] into R[]..n].
s 8—9 put the sentinels at the ends of the arrays L and R. Lines 1017, illus-

89 10 1L 12 13 14 15 16 1

A . 1 VaTs
At
L [2 T4
i
B0 10 112 13 14 15 16 17 89 10 11 12 13 14 15 16 17
. 5 2 15 '
g_if%t_ﬁj@] ® B2 [3T6T4] L AT 2
d i i

Figure:The operation of lines 10-17 in the call MERGE(A, 9, 12, 16), when the subarray
G.. 16| contains the sequence (2.4, 5.7, 1.2, 3, 6). After copying and inserting sentinels, the
ay L contains (2, 4, 5, 7, o), and the array R contains {1, 2, 3, 6, oc). Lightly shaded positions
A contain their final values, and lightly shaded posifions in L and R contain values that have yet
be copied back into A. Taken together, the lightly shaded positions always comprise the values
ginally in A[9.. 16], along with the two sentinels. Heavily shaded positions in A contain values
it will be copied over, and heavily shaded positions in L and R contain values that have already
an copied back into A, (a)~<h) The arrays A, L, and R, and their respective indices k, i, and j
or to each iteration of the loop of ines 1217,

ited in Figure, perform the r — p 4 1 basic steps by maintaining the following
Op invariant:

At the start of each iteration of the for loop of lines 12-17, the subarray
Alp..k — 1] contains the & — p smallest elements of L[l..n; + 1] and
R[l..n5 + 1], in sorted order. Moreover, L[i] and R[j] are the smallest
elements of their arrays that have not been copied back into A,

We must show that this loop invariant holds prior to the first iteration of the for
op of lines 12-17, that each iteration of the loop maintains the mmvariant, and
at the invariant provides a useful property to show correctness when the loop
‘inates.

itialization: Prior to the first iteration ol the loop, we have &k = p, so that the
subarray A[p .. &k — 1] is empty. This empty subarray contains the £ — p = 0
smallest elements of L and R, and sincei = j = 1, both L|i] and R[/] are the
smallest elements of their arrays that have not been copied back into A.

g9 10 11 12 13 14 :
A . [i]2]2]3]4 [EATEY-

g
e
i
Lh

1011 12 13 14 15 16

Y (h)

A [(O O
OO 2 B e

e e
j' ;‘_‘-:-:‘ [et
& et 1

| e k)

Figure, continued (i) The arrays and indices at termination. At this point, the subarray in
A[9.. 16] is sorted, and the two sentinels in L and R are the only two elements in these arrays that
have not been copied into 4.

Maintenance: To see that each iteration maintains the loop invariant, let us first
suppose that L[i] = R[j]. Then L[i] is the smallest element not yet copied
back into A. Because A[p ..k — 1] contains the k — p smallest elements, after
line 14 copies L[i] into A[k], the subarray A[p .. k] will contain the k — p + |
smallest elements. Incrementing k (in the for loop update) and i (in line 15)
reestablishes the loop invariant for the next iteration. If instead L[i] > R[f],
then lines 16-17 perform the appropriate action to maintain the loop invariant.

Termination: At termination, & = r + 1. By the loop invariant, the subarray
Alp..k — 1], which is A[p..r], contains the k — p = r — p + 1 smallest
clements of L[l1..n; + 1] and R[1..n; + 1], in sorted order. The arrays L
and R together contain n; + n, +2 = r — p + 3 elements. All but the two
largest have been copied back into A, and these two largest elements are the
sentinels.

To see that the MERGE procedure runs in ®&(n) time, where n =r — p + 1,
bserve that each of lines 1-3 and 8-11 takes constant time, the for loops of
nes 4-7 take @(n; + n;) = @(n) time,” and there are n iterations of the for
op of lines 12—-17, each of which takes constant time.

We can now use the MERGE procedure as a subroutine in the merge sort al-
orithm. The procedure MERGE-SORT(A, p,r) sorts the elements in the subar-
wy Alp..r]. If p = r, the subarray has at most one element and is therefore
ready sorted. Otherwise, the divide step simply computes an index ¢ that par-
tions A[p..r] into two subarrays: A[p..q], containing [n/2] elements, and
[¢ + 1..r], containing |n/2] elements.”

TERGE-SORT(A, p,r)

ifp<r
q = |(p+r)/2]
MERGE-SORT(A, p.q)
MERGE-SORT(A.q + 1,r)
MERGE(A, p.q,r)

sort the entire sequence A = (A[l], A[2], ..., A[n]), we make the initial call

FRGE-SORT (A, 1, A.length), where once again A.length = n. Figure il-
trates the operation of the procedure bottom-up when n 1s a power of 2, The
orithm consists of merging pairs of 1-item sequences to form sorted sequences
length 2, merging pairs of sequences of length 2 to form sorted sequences of
gth 4, and so on, until two sequences of length n/2 are merged to form the final
ted sequence of length n.

nalyzing divide-and-conquer algorithms

hen an algorithm contains a recursive call to itself, we can often describe its
ining time by a recurrence equation or recurrence, which describes the overall
ining time on a problem of size n in terms of the running time on smaller inputs.
: can then use mathematical tools to solve the recurrence and provide bounds on
: performance of the algorithm.

sorted sequence

T P S SN
merge
R

e N

R W AR 6

initial sequence

Figure The operation of merge sort on the array A = (5, 2,4,7,1,3,2,6), The lengths of the
sorted sequences being merged increase as the algorithm progresses from bottom to top.

A recurrence for the running time of a divide-and-conquer algorithm falls out
ym the three steps of the basic paradigm. As before, we let 7(n) be the running
ie on a problem of size n. If the problem size is small enough, say n < ¢
- some constant ¢, the straightforward solution takes constant time, which we
ite as ©(1). Suppose that our division of the problem yields a subproblems,
ch of which is 1/b the size of the original. (For merge sort, both @ and A are 2,
t we shall see many divide-and-conquer algorithms in which a # b.) It takes
ne T (n/b) to solve one subproblem of size n/b, and so it takes time a7 (n/h)
solve a of them. If we take D(n) time to divide the problem into subproblems
d C(n) time to combine the solutions to the subproblems into the solution to the
iginal problem, we get the recurrence

= E(1) ifn <c,
) aT(n/b) + D(n) + C(n) otherwise .
nalysis of merge sort

though the pseudocode for MERGE-SORT works correctly when the number of
*ments is not even, our recurrence-based analysis is simplified if we assume that

iginal problem size is a power of 2. Each divide step then yields two subse-
es of size exactly n/2. we shall see that this assumption does not affect the
of growth of the solution to the recurrence.

reason as follows to set up the recurrence for 7'(n), the worst-case running
»f merge sort on n numbers. Merge sort on just one element takes constant
When we have n > | elements, we break down the running time as follows.

e: The divide step just computes the middle of the subarray, which takes
nstant time, Thus, D(n) = G(1).

uer: We recursively solve two subproblems, each of size n/2, which con-
butes 27 (n/2) to the running time.

hine: We have already noted that the MERGE procedure on an n-clement
barray takes time ©(n), and so C(n) = &(n).

Vhen we add the functions D(n) and C(n) for the merge sort analysis, we are
ing a function that is ®(n) and a function that is @(1). This sum is a linear
ction of n, that is, ®(n). Adding it to the 27(n/2) term from the “conquer”
y gives the recurrence for the worst-case running time T'(n) of merge sort:

) () =1,

) = 2T(n/2) + O(n) ifn>1.

we shall see the “master theorem,” which we can use to show
T'(n) is @(n lgn), where lgn stands for log, n. Because the logarithm func-
) grows more slowly than any linear function, for large enough inputs, merge
, with its ©(n lgn) running time, outperforms insertion sort, whose running
e is ®(n?), in the worst case.
Ve do not need the master theorem to intuitively understand why the solution to
recurrence is 7' (n) = ®(n lgn). Let us rewrite recurrence as

) c itn =1,
IT —
2T(n/2)+cn iftn>1,

ere the constant ¢ represents the time required to solve problems of size | as
|| as the time per array element of the divide and combine steps.

For convenience, we as-

ne that n is an exact power of 2. Part (a) of the figure shows T'(n), which we
and in part (b) into an equivalent tree representing the recurrence. The cn term
he root (the cost incurred at the top level of recursion), and the two subtrees of
root are the two smaller recurrences T'(17/2). Part (c) shows this process carried
> step further by expanding T'(n/2). The cost incurred at each of the two sub-
les at the second level of recursion is ¢n/2. We continue expanding each node
he tree by breaking it into its constituent parts as determined by the recurrence,
il the problem sizes get down to I, each with a cost of ¢. Part (d) shows the
ulting recursion tree.
Next, we add the costs across each level of the tree. The top level has total
t cn, the next level down has total cost ¢(n/2) + c(1n/2) = cn, the level after
t has total cost ¢ (n/4) +c(n/4)+c(n/4) +c(n/4) = cn, and so on. In general,
level i below the top has 2' nodes, each contributing a cost of ¢(/2'), so that
ith level below the top has total cost 2' ¢(/2') = cn. The bottom level has »
les, each contributing a cost of ¢, for a total cost of ¢n.

The total number of levels of the recursion tree in Figure is lgn + 1, where

is the number of leaves, corresponding to the input size. An informal inductive
gument justifies this claim. The base case occurs when n = 1, in which case the
¢ has only one level. Since Ig1 = 0, we have that lgn + 1 gives the correct
imber of levels. Now assume as an inductive hypothesis that the number of levels
"a recursion tree with 2" leaves is g2’ + 1 = i + 1 (since for any value of 7,
e have that lg2' = j). Because we are assuming that the input size is a power
"2, the next input size to consider is 2't!. A tree with n = 2'*! leaves has
1e more level than a tree with 2’ leaves, and so the total number of levels is
+1D+1=1g2" 1.

To compute the total cost represented by the recurrence, we simply add up

e costs of all the levels. The recursion tree has lgn + 1 levels, each costing ¢n,
r a total cost of en(lgn 4+ 1) = enlgn + cn. Ignoring the low-order term and
e constant ¢ gives the desired result of ®(n lgn).

Tlred

Fad
TLnlZE) FimsZ)
{4} (b
A a5
ot 2
(L / \
Fag P | errdel
Y £ r.' r-' e
5
Ll

Filgure, How o constraet g recursion trec for the

Faly]
2
/\
Timid) Tl)y
e
B 1T
s 7 LT PP —— | [T
/\
Far i | Pt e [T

i 1'%

/\

TCnid) Tl

L
[

(=)

Westaal: com lig /v + ooz

recurrence Fla) =

2T 2y + on,

Far (@) showes a0, which progressively expands in (b—0d) oo Pormn the recursion tress. TUhe Tully
expanded tree in part (<) has g 4+ 1 levels (e, it has height g a, as indicated), and cach level
contributes a totnl cost of ca. The wotal cost, therefore, is cn lgsn -+ ca, which is ©(r lga).

